Maximizing Orbits for Higher Dimensional Convex Billiards

نویسنده

  • MISHA BIALY
چکیده

The main result of this paper is, that for convex billiards in higher dimensions, in contrast with 2D case, for every point on the boundary and for every n there always exist billiard trajectories developing conjugate points at the n-th collision with the boundary. We shall explain that this is a consequence of the following variational property of the billiard orbits in higher dimension. If a segment of an orbit is locally maximizing, then it can not pass too close to the boundary. This fact follows from the second variation formula for the Length functional. It turns out that this formula behaves differently with respect to ”longitudinal” and ”transversal” variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On three-periodic trajectories of multi-dimensional dual billiards

We consider the dual billiard map with respect to a smooth strictly convex closed hypersurface in linear 2m-dimensional symplectic space and prove that it has at least 2m distinct 3-periodic orbits. AMS Classi cation 37J45, 70H12

متن کامل

The First Birkhoff Coefficient and the Stability of 2-Periodic Orbits on Billiards

In this work we address the question of proving the stability of elliptic 2-periodic orbits for strictly convex billiards. Eventhough it is part of a widely accepted belief that ellipticity implies stability, classical theorems show that the certainty of stability relies upon more fine conditions. We present a review of the main results and general theorems and describe the procedure to fullfil...

متن کامل

Billiards with a given number of (k,n)-orbits.

We consider billiard dynamics inside a smooth strictly convex curve. For each pair of integers (k,n), we focus our attention on the billiard trajectory that traces a closed polygon with n sides and makes k turns inside the billiard table, called a (k,n)-orbit. Birkhoff proved that a strictly convex billiard always has at least two (k,n)-orbits for any relatively prime integers k and n such that...

متن کامل

Periodic trajectories in 3-dimensional convex billiards

We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...

متن کامل

Periodic trajectories in 3-dimensional convex billiards

We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008